Skip to main content

Normal Probability Distribution

Also called Gaussian distribution. OK, many things in this world tends, and should do, to be normally distributed.
Any distribution is a representation of how the information or data is distributed. We mainly look for its central tendency (mean) and variability (variance). That's why the normal distribution is usually written as:

N ~ (Mu, Sigma^2)



For example: the weight of most adult (who still youth) people will normally be centered around some values. Yes, you right there is a diversity: some are slim and some are obese.

We may expect the average weight for people (example: ages 20 to 30) to be between 70 to 74 kg. OK, let's consider it as 72 (this is the mean value).

Let x represents the weight of a random person. Thus,

Expected Value [x] = mean [x] = Mu = 72 kg

If we have a sample, we can compute the variance (sigma^2) to indicate variability. But we may here think as following:

Variance = Sigma^2 = Expected Value [(x-Mu)^2]
Standard Deviation = Sigma = square root [variance]

Got it? The variance is just the squared expected (average) difference between values of x and its mean Mu.

Assume that the weights could vary (in average) +4 or -4 kgs from the mean value. Thus, we have

Sigma approx= 4
Variance approx= 16

We may conclude, the probability distribution of youth people weight:

weight = x ~ N (72, 16)

Note: this is just an illustrative example where real information may be different depending on location or other factors.

Facts for any normally distributed data:
  • Within 1 sigma distance/difference from the mean value (to left and right), there exist about 68% of data.
  • Within 2 sigmas distance/difference from the mean value (to left and right), there exist about 95% of data.
___

Comments

Popular posts from this blog

The "Sample"

Anytime you aim to perform a study on the entire population, you will surely find that this task will be: Much time and/or efforts consuming as populations are normally huge . Impossible if the population is infinite (such as products). Here comes the role of taking samples. Yes! we just take a sample from the whole population, perform the study on the chosen sample, apply the results back to our population. This is the core of  inferential statistics because what we do is to infer parameters/properties of the population using information from a small sample. Well, this does not mean we will obtain 100% exact accurate estimations or inferences. But to be as close as possible, sample elements should be taken randomly ! At least, being random in sample selection will mostly include the diversity of information/facts within our population.

Understanding the distribution of sample mean (x_bar)

Cool, say now we have a huge population with characteristics ( Mu, Sigma^2 ). When doing a study by sampling, we take a random sample ( size n items ) and then perform the study on the sample and conclude results back for the population. From Central Limit Theorem, we know that the sample mean will always follow a normal distribution  apart from what the population distribution is, such that: x_bar ~ N (Mu, Sigma^2/n) or say: Expected (x_bar) = Mu Variance (x_bar) = Sigma^2/n Well, let's see a simple illustrating example: Suppose we have a population with mean Mu=100 . Now, we have taken a sample, and computed the sample mean, x_bar. We mostly will have x_bar near 100 but not exactly 100. OK, let take another 9 separate samples... suppose these results: First sample --> x_bar = 99.8 Second sample --> x_bar = 100.1 .. .. .. 10th sample --> x_bar = 100.3 What we see that the sample mean is usually close to real population mean, that

Conclusions of Hypothesis Testing

A general hypothesis is defined as following (eg a hypothesis on the population mean): H0: Mu = Mu0 H1: Mu !=  Mu0 OK, apart from we have a two or one sided hypothesis, after performing the checking and statistical tests: our conclusion should be one of the following: Rejecting the null hypothesis (H0). Failing to reject the null hypothesis (H0). The following statements for conclusions are not accurate : Accepting the null hypothesis (H0). Accepting the alternative hypothesis (H1). But why? When we fail to reject H0, it does not mean we accept H0 as a fact because we still could not prove it as a fact. But what happened is that we failed to prove it to be false. This goes like following: we have suspected new factors may affected the population mean, then we have taken all possible evidences and checking, but all checking failed to prove our suspects. As well, rejecting H0 does not mean accepting H1 as a fact. What happens in this case is we p